Exam Details
Subject | Thermodynamics & Statistical Mechanics | |
Paper | ||
Exam / Course | Bachelor Degree Programme (Elective Course: Physics) | |
Department | School of Sciences (SOS) | |
Organization | indira gandhi national open university | |
Position | ||
Exam Date | December, 2015 | |
City, State | new delhi, |
Question Paper
The coefficient of viscosity of helium at 27°C is 2 x poise. If the gas molecules have mass 6·67 x 10^-27 kg and move with average speed 1·26 x 10^3 calculate the diameter of a helium molecule.
The efficiency of a Carnot engine operating between temperatures T1 and T2 is 1/6. If the temperature of the sink is lowered by 62°C, its efficiency doubles. Calculate the temperatures of the source and sink.
A certain mass of an ideal gas at 27°C and 8 atm pressure is expanded suddenly to four times its initial volume. Calculate the final pressure as well as temperature of the gas. Take y =1·5.
The spectral energy curve of the moon shows maxima at 470 nm and 14 Mm. Calculate the corresponding temperatures. What conclusions can you draw from this data? Take b 2·892 x m-K.
One mole of an ideal gas is made to undergo a quasi-static adiabatic change. The pressure and temperature of the gas are related through T^y constant. Use this result to obtain an expression for adiabatic lapse rate.
The work done by hydrostatic pressure is defined as W integral p dV.(limits V1 to V2) If n moles of an ideal gas are made VI to undergo isothermal process, calculate the work done.
For two (or more) phases of one-component system to exist in equilibrium, the specific Gibbs potential must be equal. Use this fact to derive Clausius -Clapeyron equation and discuss why food cooks more efficiently in a pressure cooker.
'What is Joule -Thomson effect? Discuss qualitatively, how it is used to produce low temperatures.
What do you understand by the term Transport Phenomena Define coefficient of viscosity. Assume that
each molecule makes its last collision at two-third mean free path above or below an imaginary surface and
the number of particles crossing this plane from either side per unit area per second is 1/4 nv.
Obtain an expression for n. Discuss its pressure and temperature dependence.
What is Brownian motion Discuss its characteristics. For one-dimensional Brownian motion, show that diffusion coefficient is connected to displacement s of a particle in time t through the relation D
Define entropy. Show that the change in the entropy during mixing of two gases is given by
ASmix R ln x1-n2 R ln x2 where x1 and x2 are the mole fractions while n1 and n2 are number of moles of the two gases.
Show that Fermi energy at absolute zero temperature is given by
EF= h^2/2m
What is Gibbs paradox? Derive Sakur -Tetrode equation starting from the expression for thermodynamic probability. Show that it is free from Gibbs paradox. Assume that N-particle partition function is given by
ZN V^N
The efficiency of a Carnot engine operating between temperatures T1 and T2 is 1/6. If the temperature of the sink is lowered by 62°C, its efficiency doubles. Calculate the temperatures of the source and sink.
A certain mass of an ideal gas at 27°C and 8 atm pressure is expanded suddenly to four times its initial volume. Calculate the final pressure as well as temperature of the gas. Take y =1·5.
The spectral energy curve of the moon shows maxima at 470 nm and 14 Mm. Calculate the corresponding temperatures. What conclusions can you draw from this data? Take b 2·892 x m-K.
One mole of an ideal gas is made to undergo a quasi-static adiabatic change. The pressure and temperature of the gas are related through T^y constant. Use this result to obtain an expression for adiabatic lapse rate.
The work done by hydrostatic pressure is defined as W integral p dV.(limits V1 to V2) If n moles of an ideal gas are made VI to undergo isothermal process, calculate the work done.
For two (or more) phases of one-component system to exist in equilibrium, the specific Gibbs potential must be equal. Use this fact to derive Clausius -Clapeyron equation and discuss why food cooks more efficiently in a pressure cooker.
'What is Joule -Thomson effect? Discuss qualitatively, how it is used to produce low temperatures.
What do you understand by the term Transport Phenomena Define coefficient of viscosity. Assume that
each molecule makes its last collision at two-third mean free path above or below an imaginary surface and
the number of particles crossing this plane from either side per unit area per second is 1/4 nv.
Obtain an expression for n. Discuss its pressure and temperature dependence.
What is Brownian motion Discuss its characteristics. For one-dimensional Brownian motion, show that diffusion coefficient is connected to displacement s of a particle in time t through the relation D
Define entropy. Show that the change in the entropy during mixing of two gases is given by
ASmix R ln x1-n2 R ln x2 where x1 and x2 are the mole fractions while n1 and n2 are number of moles of the two gases.
Show that Fermi energy at absolute zero temperature is given by
EF= h^2/2m
What is Gibbs paradox? Derive Sakur -Tetrode equation starting from the expression for thermodynamic probability. Show that it is free from Gibbs paradox. Assume that N-particle partition function is given by
ZN V^N
Other Question Papers
Departments
- Centre for Corporate Education, Training & Consultancy (CCETC)
- Centre for Corporate Education, Training & Consultancy (CCETC)
- National Centre for Disability Studies (NCDS)
- School of Agriculture (SOA)
- School of Computer and Information Sciences (SOCIS)
- School of Continuing Education (SOCE)
- School of Education (SOE)
- School of Engineering & Technology (SOET)
- School of Extension and Development Studies (SOEDS)
- School of Foreign Languages (SOFL)
- School of Gender Development Studies(SOGDS)
- School of Health Science (SOHS)
- School of Humanities (SOH)
- School of Interdisciplinary and Trans-Disciplinary Studies (SOITDS)
- School of Journalism and New Media Studies (SOJNMS)
- School of Law (SOL)
- School of Management Studies (SOMS)
- School of Performing Arts and Visual Arts (SOPVA)
- School of Performing Arts and Visual Arts(SOPVA)
- School of Sciences (SOS)
- School of Social Sciences (SOSS)
- School of Social Work (SOSW)
- School of Tourism & Hospitality Service Sectoral SOMS (SOTHSM)
- School of Tourism &Hospitality Service Sectoral SOMS (SOTHSSM)
- School of Translation Studies and Training (SOTST)
- School of Vocational Education and Training (SOVET)
- Staff Training & Research in Distance Education (STRIDE)
Subjects
- Astronomy and Astrophysics
- Communication Physics
- Electric & Magnetic Phenomena
- Electrical Circuits and Electronics
- Elementary Mechanics / Ocillations & Waves
- Mathematical Methods in Physics-I/ Mathematical Methods in Physics-II
- Mathematical Methods in Physics-III
- Modern Physics
- Optics
- Physics of Solids
- Thermodynamics & Statistical Mechanics